sibotherm ° Încălzire în pardoseală ° Șapă încălzire pardoseală Uscată Fluidă

Șapă încălzire pardoseală Uscată Fluidă


Share

Of! Ce găsim pe net.🇷🇴 despre (grosime) șapă încălzire în pardoseală!? Nu treb’e ∑(avioane 🛫 + două facultăți)³ despre șapă. Stop 🛑 stresului că: uscată, umedă, groasă, subțire! E o șapă obișnuită, aceeași de când lumea 🤸‍♀️ (mare parte). Nu impune: folie de telefon, fier-de-armat, fulgi de Nea. Salt mai jos la variante grosime.

Pe scurt & anti-mituri:

  • Șapa mai subțire NU este mai eficientă decât șapa mai groasă. Ia, vezi: regimuri de transfer termic staționar vs tranzitoriu. E doar mai rapidă, mai ușoară. Pentru casă de om, folosită 24/7, inerție termică mai mare = mai 👍 ok.
  • Armătura (de orice fel) nu crește nicio eficiență, nicio putere, kW.
  • Fluida NU e mai eficientă decât uscata, cu montaj ok.
  • Fluidă → cu doar 0,2..0,3°C poate fi mai mică temperatura apei față de uscată.
  • Fluida și uscata, după deshidratare, au ~aceleași: densitate, porozitate, contact m² cu țeava.
  • Șapa în aderență (cu priză, fără polistiren, fără folii) poate fi mai scundă: ±2 cm; implicit, mai ușoară.
  • Folia de aluminiu ajută la: 😮 absolut nimic.
  • Șapa se dilată doar pe lungime, nu pe lățime, nu pe înălțime.
  • Șapa e supusă, obișnuit, la comprimare (orizontal, vertical), nu întindere.
  • Fulgi, fibre, armături: deloc obligatorii pentru grosimi obișnuite ale șapei în casă de om.
  • Aditivul nu ajută la nicio elasticitate, ajută la uscare: evitare bule aer, crăpături.
Sapa încalzire în pardoseala - uscata vs umeda vs grosime
Șapă încălzire în pardoseală – uscată vs umedă vs grosime

Nu mă iau după instalator! ⚠

Mă iau după constructor, sau fișele tehnice ale făcătorilor de șape:
° uscate, de ciment: Adeplast, Baumit, Knauf (catalog), Mapei, Weber;
° fluide, de sulfat de calciu: Adeplast, Baumit, Knauf (catalog), Mapei, Weber.
Făcătorii de instalații au și ei păreri. Aș merge pe mâna primilor, constructorii. Sar peste instalator, întreb inginerul de c-ții (proiectant, ori executant), sau o firmă de șape, ori un fabricant.

Ingineri constructori

Holcim despre betoane. Aș citi articolul lor. Consider că știu mai bine decât un instalator cum e cu betoanele.

Corect ar fi ca inginerul de construcții să facă niște calcule cu toate straturile împreunate (polistiren, șapă, finisaj) pentru:

rezistență la apăsare ↓ = cât putem încărca, kgf/m². Astfel, știm că putem monta, sau nu, un dulap de o anumită greutate.
rezistență la comprimare →← = șapa se dilată, iar pereții nu o lasă să se întindă liber. Oricum, betonul este unul din materialele cu cel mai bun comportament la comprimare. Într-o casă de om, forțele astea nu au cum depăși pe cele admisibile.
rezistență la încovoiere ↗↖ = o șapă (mai) subțire se poate încovoia (îndoi în sus), astfel supusă la întindere. Fenomen ce poate apărea în cazul unei șape subțiri cu lungimi foarte mari, dilatări nepreluate de banda perimetrală (și alte rosturi dilatare, dacă ∃), ∼deloc întâlnite în case de locuit.
Întindere (uniformă pe grosime) este când rosturile de dilatare sunt mari, iar prin dilatare șapa nu ajunge pereții.

Însă, ca în instalații, aceste calcule = pasăre 🦅 rară.

Cu alte cuvinte, inginerul proiectant de c-ții spune cât de subțire poate fi o șapă. Sau, pt. anumite grosimi, impune: clasa betonului; încărcarea maximă kgf/m²; dilatare maximă = mai multe/mai puține rosturi de dilatare în funcție de temperaturile minime, maxime ale șapei; armare cu oțel, fibre.

Șapă flotantă, glisantă, în aderență

1. Șapă flotantă

Straturi incazire in pardoseala
FOIETAJ încălzire în pardoseală
Șapă FLOTANTĂ = nu lipită de placă, polistiren sub
Sub polistirenul cu nuturi, tacker, extrudat putem pune un alt strat pentru izolarea TERMICĂ MAI MARE.
BANDA perimetrală e mult mai comod de montat PESTE polistiren, nu sub polistiren. Își face treburile: rost marginal + șapa nu intră între perete și polistiren.
Cu polistirenul și banda facem, de fapt, O CUVĂ în care vărsăm șapa.

Flotantă = ca viza de flotant pe buletin = fără rădăcini în glie. Polistiren sub țevi, șapă. Foietajul cel mai întâlnit, cea mai bună izolare termică, fonică, cel mai ușor de montat țevile (agrafe, sau 💰 nuturi). Enervant: cel mai înalt. Dacă nu s-a considerat încălzirea prin șapă ⇒ ghinion! Trebuie apelat la varianta 3. Oricum, var. 3 = nicio problemă pentru etaje.

Înaltime (grosime) încalzire în pardoseala
ÎNĂLȚIME (grosime) încălzire în pardoseală
Polistiren extrudat cu FALȚ pe 4 laturi (petrecute)
XPS sub 25 mm → șapă min 4,0 cm PESTE țeavă
XPS peste 25 mm → șapă min 4,5 cm PESTE țeavă
AGRAFELE au 4 cm, SAU 3,5 cm
Țeavă 17 mm → agrafa pătrunde ~23 mm, sau 18 mm

2. Șapă glisantă

Dacă n-ar fi pereții, șapa ar glisa ca o ușă, ca un pește din mâna mincino…, pardon, pescarului. Glisantă = folie polietilenă sub țevi, șapă. Mai rar întâlnită. Un fel de flotantă, dar fără niciun grad de comprimare.

3. Șapă în aderență (lipită)

În aderență = lipită de placă, una cu placa de rezistență, cu rădăcini în glie. Șapa face priză cu stratul suport. Este eliminat riscul ca șapa să se încovoaie. Avantaj: CEL MAI SCUND foietaj. Dezavantaj: nu pot izola termic. Fără adaptarea meteo (sibotherm propunere) inerția termică va da bătăi mai mari de cap.

GROSIMEA șapei ⇒ rezistența mecanică

Grosimea șapei este recomandată de către fabricant. Trebuie respectate prescripțiile tehnice ale acestora: Adeplast, Baumit, Knauf, Mapei, Weber. Grosimea minimă se referă la rezistențe mecanice. Polistiren sub șapă înseamnă slăbirea rezistențelor. Motiv pentru care un polistiren mai gros implică o grosime mai mare a șapei, pe când o șapă fără polistiren (face priză cu baza) are cele mai mici grosimi.

a) Dacă există polistiren cu g > 2,5 cm:
° șape uscate → 4,5 cm peste conducte,
° șape fluide → 3,5 cm peste partea de sus a țevii.
Adică, șapa va avea de la polistiren: 1,7 cm țeava + 4,5 șapa uscată = 6,2 cm. Sau, constructorul prepară propriile șape cu respectarea normelor.

b) Dacă există polistiren cu g < 2,5 cm:
° șape uscate → 4,0 cm peste conducte,
° șape fluide → 3,0 cm peste partea de sus a țevii.

⚠ Grosimea MAXIMĂ a șapei!

Fabricanții recomandă și o grosime maximă: 7..8 cm! Pentru grosimi mai mari → consultat cu fabricantul, sau constructorul.

Șapă mini, fluidă scundă ±20 mm

Încalzire în pardoseala mini Rehau 21 mm
Încălzire în pardoseală mini 21 mm Rehau
Rautherm Speed + Renova (pliant)

a) Cu șapa în aderență putem avea o înălțime de doar 1,5..2 cm + finisajul.
b) Plasă sudată (4+4 mm) 8 + țeavă 17 = 25 + câțiva mm peste = 3 cm + finisajul.
c) Cel mai scund: țeavă de 9,9 mm + epoxidică, vopsea c-ții, μ-ciment ca finisaj. Atenție! Vorbim de șapă în aderență, fără niciun polistiren, fără nicio folie.

⚠ Efectul de zebră a temperaturilor sub talpă

Evident, fără adaptarea-meteo-sibotherm efectul de 🦓 zebră, tur°C-retur°C, se simte mult pronunțat.
Uponor Minitec grosime sapa
Uponor Minitec – grosime șapă încălzire în pardoseală

Grosime șapă încălzire în pardoseală – variante

  1. Șapă uscată, flotantă, polistiren cu g > 2,5 cm

    4,5 cm peste țevi → grosime minimă șapă

    9,2 cm + finisaj = XPS 3,0 cm + țevi 17 mm + șapă 4,5 cm
    11,2 cm + finisaj = XPS 5,0 cm + țevi 17 mm + 4,5 cm

    Varianta cea mai întâlnită. Foarte ok: și tehnic, și financiar.
    Preț șapă ∼30 lei/m² materiale + manoperă. Aceeași ca în cazul caloriferelor + ceva aditiv.
    Preț XPS 3 cm ∼13 lei/m².
    Poate fi polistiren expandat = mai ieftin, EPS 3 cm + XPS 3 cm. Sau, grosimi mai mari: și EPS, și/sau XPS.
    XPS 3 cm obligatoriu ultimul strat sub țevi, că se prind mult mai bine decât pe orice EPS100..EPS200 cu orice grosime.

    Non-inginerește → Avem clienți cu șapa mai subțire, doar 2..3 cm peste țevi. Încă nu știu să fi avut probleme de crăpat, sfărâmat. Ar ajuta și adaptarea meteo a încălzirii = nu variații de temperatură, dilatări-contractări minime.

  2. Șapă uscată, flotantă, polistiren cu g < 2,5 cm

    4,0 cm peste țevi → grosime minimă șapă

    Există țevi cu 9,9 mm diametru, sau 10, 12 mm (stoc deficitar).
    Există plăci cu nuturi fără EPS, însă 50..55 lei/m².

    5,0 cm + finisaj = nuturi fără polistiren + țevi 10 mm + șapă 4 cm
    5,2 cm + finisaj = nuturi fără polistiren + țevi 12 mm + șapă 4 cm
    5,7 cm + finisaj = nuturi fără polistiren + țevi 17 mm + șapă 4 cm
    6,7 cm + finisaj = nuturi 1 cm + țevi 17 mm + șapă 4 cm
    7,7 cm + finisaj = XPS 2 cm + țevi 17 mm + șapă 4 cm
    8,2 cm + finisaj = tacker 2,5 cm + țevi 1,7 + șapă 4 cm

  3. Șapă uscată, în aderență, fără polistiren, fără folie

    5 mm peste țevi → grosimea minimă a șapei depinde de fabricant, rețetă șapă, încărcări.

    Ing. constructori recomandă folosirea fibrelor de armare, Sika sau similar.

    Se folosește aditiv de înc. pard.

    1,5 cm + finisaj = nuturi fără polistiren + țevi 10 mm + șapă 5 mm
    1,7 cm + finisaj = nuturi fără polistiren + țevi 12 mm + șapă 5 mm
    2,5 cm + finisaj = plasă sudată 4+4=8mm + țevi 12 mm + șapă 5 mm
    Țevile de mai sus = ∼scumpe.

    2,2 cm + finisaj = nuturi fără polistiren + țevi 17 mm + șapă 5 mm

    3,0 cm + finisaj = plasă sudată 4+4=8 mm + țevi 17 mm + șapă 5 mm = varianta cea mai ok financiar. Finisaj foarte scund = epoxidică, μ-ciment, tarket, covor PVC, vinil, LVT 4 mm; parchet laminat 5+ mm etc.

  4. Șapă fluidă, flotantă, polistiren cu g > 2,5 cm

    3,5 cm peste țevi → grosime minimă șapă
    Nu se folosește aditiv de înc. pard.

    8,2 cm + finisaj = XPS 3 cm + țevi 17 mm + șapă 3,5 cm
    10,2 cm + finisaj = XPS 5 cm + țevi 17 mm + șapă 3,5 cm

  5. Șapă fluidă, flotantă, polistiren cu g < 2,5 cm

    3,0 cm peste țevi → grosime minimă șapă
    Nu se folosește aditiv de înc. pard.

    Pe piața noastră, există țevi cu 9,9 mm diametru (Uponor), sau 10, 12 mm.

    4,0 cm + finisaj = nuturi fără polistiren + țevi 10 mm + șapă 3 cm
    4,2 cm + finisaj = nuturi fără polistiren + țevi 12 mm + șapă 3 cm
    4,7 cm + finisaj = nuturi fără polistiren + țevi 17 mm + șapă 3 cm
    5,7 cm + finisaj = nuturi 1 cm + țevi 17 mm + șapă 3 cm
    6,7 cm + finisaj = XPS 2 cm + țevi 17 mm + șapă 3 cm
    7,2 cm + finisaj = tacker 2,5 cm + țevi 17 mm + șapă 3 cm

  6. Șapă fluidă, în aderență, fără polistiren, fără folie (mini)

    5 mm peste țevi → grosimea minimă a șapei depinde de fabricant, rețetă șapă, încărcări
    Nu se folosește aditiv de înc. pard.

    1,5 cm + finisaj = nuturi fără polistiren + țevi 10 mm + șapă 5 mm
    1,7 cm + finisaj = nuturi fără polistiren + țevi 12 mm + șapă 5 mm
    2,5 cm + finisaj = plasă sudată 4+4=8mm + țevi 12 mm + șapă 5 mm
    Țevile de mai sus = ∼scumpe.

    2,2 cm + finisaj = nuturi fără polistiren + țevi 17 mm + șapă 5 mm

    3,0 cm + finisaj = plasă sudată 4+4=8 mm + țevi 17 mm + șapă 5 mm

    🛑 Ne cerem scuze, perioada aceasta, nu executăm sisteme mini, varianta 6. Vă rugăm să nu ne cereți oferte. Mulțumim.

  7. Finisaje foarte scunde, câțiva milimetri

    a-vopsea pentru c-ții,
    b-epoxidică,
    c-μ-ciment.
    Tarket, covor PVC, vinil, LVT 4 mm; parchet laminat 5+ mm etc.
    Toate variantele pot arăta foarte ok, însă → prețuri pe măsură.

Greutatea, densitatea șapei

ρ = ~2000 kg/m³ șapă uscată sau fluidă (ambele după uscare)
Greutatea, încărcarea șapei pe structura de rezistență = 120 kgf/m², g = 6 cm de la polistiren.
Volumul înlocuit de țeavă ar trebui scos, dar rămâne considerat, că și apa cu țeava au greutate.
Grosime 3,0 cm → încărcare 60 kgf/m² (daN/m²)
Grosime 4,0 cm → încărcare 80 kgf/m²
Grosime 4,5 cm → încărcare 90 kgf/m²
Grosime 5,0 cm → încărcare 100 kgf/m²
Grosime 6,0 cm → încărcare 120 kgf/m²
Grosime 7,0 cm → încărcare 140 kgf/m²
⚠ Șapa încarcă la fel structura. Grosime mai mică → greutate mai mică.

Volum țeavă cu Dext 17 mm = 0,227 mc/1000 metri.
Casă 140 m² utili, șapă 6,5 cm de la polistiren ⇒ 9,75 m³ – 0,227 m³ = 9,52 m³ de șapă. Deci, volumul țevilor nu prea contează.

Încălzire în pardoseală peste lemn

Unele case au planșeu peste parter (sau etaj) din lemn (structură ușoară) → mansardă. Se poate turna șapă, evident. Inginerul constructor spune încărcarea maximă, greutatea acceptată, de ex. 168 kgf/m². Șapa + mobila + om au sub valoarea asta = ok.

Dilatare (liniară)

Interesant! Corpurile solide (major-parte) se dilată doar pe latura lungă. Țevile doar pe lungime, niciodată pe diametru. La fel șapa, gresia. ⚠ NU se dilată pe grosime, nici pe lățime, ci numai pe lungime. Bine, (un pătrat) un cub are toate laturile „cele mai lungi”.

Of! Țeava cu șapa devin una, ca betonul armat. Doar, nu se dilată țeava și împinge betonul care o învelește 🤭. La ce solicitări sunt supuse, de fapt, țeava și șapa? Că, s-ar întinde, dar plapuma, pardon – pereții, nu le lasă. Același lucru, țeavă + șapă în aderență + placă devin una și aceeași.

Pardoseală vs calorifere vs terase

Șapa se dilată și dacă nu ar fi încălzire în pardoseală. Șapa unei terase poate avea temperaturi de -20°C și de +40°C. Cu încălzirea în pardoseală (bine gândită) avem, de fapt, dilatările, chiar și contractările cele mai mici – mai constante vs calorifere.

Să considerăm niște lungimi și niște temperaturi pentru a vedea cât s-ar dilata o șapă.

Cât se dilată șapa?

α = 0,012 mm/m°C = coeficient dilatare șapă
L = 8 m, inițial 10° (că șantier) ↗ final 35°C (că încălzim maxim) ⇒ ΔL < 2,40 mm. Mult?
L = 5 m, 15° (când pun gresia) ↗ 35°C ⇒ ΔL < 1,20 mm pe 8 m.
Într-o casă cu adaptare meteo, majoritatea laturilor încăperilor se dilată sub 1 mm.
Avantaj adaptare meteo = șapa se dilată sub 1 mm pe întreg sezonul rece = șapa se dilată neglijabil de-a lungul unei zile = șapa nu se dilată-contractă de-a lungul ciclurilor de pornire-oprire din termostate.

Cât se dilată gresia?

α = 0,007 mm/m°C = coeficient dilatare gresie
Considerăm o latură (cea lungă contează) de 5 m, 15° inițial (fișa tehnică recomandă să fie 15° când se montează gresia) ↗ 33°C final (temperatura maximă de calcul pt. băi, 29° alte zone) ⇒ ΔL = 0,63 mm pe 5 m.
Laturi mai scurte, ΔL mai scurte. Adaptare meteo propusă de noi → cele mai mici dilatări, insesizabile, nicio problemă pentru plăci de gresie fără rosturi între. Într-o casă nelocuită, cu temperaturi sub 15, gresia va fi supusă contractării, ca celelalte elemente de c-ție.

Cât se dilată țeava?

α = 0,15 mm/m°C = coeficient dilatarea țeavă Purmo Pexpenta, Rehau Rautherm S, Uponor Comfort Plus.

¯\_(ツ)_/¯ ⚠ Țeava devine una cu șapa. S-ar dilata de vreo 10 ori mai mult. Ținută de șapă, țeava e mai tot timpul supusă la compresiune. Uite încă un motiv să adaptăm-meteo-sibotherm → cea mai mică temperatură, cele mai mici forțe de tensiune, fără cicluri dilatare-contractare! Degeaba cea mai scumpă țeavă & exploatarea cea mai proastă.

Rosturi în șapă

Citim fișele tehnice ale șapelor. Acolo scrie despre rostul rosturilor.

Rost structural – rosturile din stratul suport trebuie continuate şi în şapă. ⚠ Ce spuneam de instalator versus constructor?

Rost marginal (perimetral) – se face între șapă-pereți, în dreptul elementelor verticale (stâlpi, scări, socluri) prin montarea benzii perimetrale din polietilenă expandată de min 4 mm grosime. Mai COMOD de montat: peste polistiren.

Rost de contracţie – se realizează prin tăierea şapei la 2/3 din grosime în proaspăt sau după întărirea acesteia (24h) pt. suprafeţe > 25 m².

Rost de dilatare – se realizează prin tăierea şapei în toată grosimea în proaspăt, sau după întărirea acesteia (24h):
– suprafeţe > 40 m²;
– în dreptul golurilor de uşi ale camerelor cu raport disproporţionat:
lungime > 2⨯lățime, de ex. L⨯l = 5⨯2 metri;
– cu o diagonală mai mare de 10 m, de pildă 8⨯6 m, 8,9⨯4,6 m
¯\(°_o)/¯ 10² = 8² + 6², numere pitagorice – pfui, mai ținem minte?;
– camere în formă de L, (U, Z).

Rost dilatare – încălzire în pardoseală

Noi respectăm propunerile de mai sus, (norme construcții).

Nu punem rost de dilatare la uși pentru:
– camere cu raport L÷l mai mic de 2, de ex. 5,2⨯2,6 metri;
– ușa se află pe latura lungă (se dilată doar latura lungă a șapei);
– încăperi cu diagonala mai mică de 10 metri (8⨯6 m);
– camere cu S < 40 m²;

Propunem rosturi:
– holuri mai lungi de 10..12 metri;
– încăperi în formă de L. Nu pentru o bucătărie de 6⨯6 m și o cămară în colț de 1⨯1 m. Suprafețele din L să aibă un raport de 1/3..1/4.

Să spunem că noi (sibo) am fi la limita normelor, chiar sub. Însă, de la prima lucrare 2005, n-am avut absolut nicio șapă, nicio gresie, niciun parchet compromise.

Dilatare gresie – încălzire în pardoseală

⚠ GRESIE! De verificat fișa tehnică, recomandarea făcătorului: rosturi între plăci, direcție dispunere, temperaturi de montare ș.a. Iarăși revin la adaptarea meteo (sibotherm propunere). Apa va avea diferență de ~3°C/zi, ~20°C/întreg sezonul rece → ȘAPA va purta aceeași temperatură pe zi și diferență de ~6°C/întreg sezon 6..9 luni. Insesizabil.

ΔL gresie = L 5 m × α 0,007 mm/m°C × Δt 6°C = 0,21 mm pe întreg sezon rece
ΔL șapă = L 5 m × α 0,012 mm/m°C × Δt 6°C = 0,36 mm pe întreg sezon rece

Polistiren sub șapă – grosime

Unii cred că pun un dulap și se lasă polistirenul de sub șapă. Evident, în funcție de densitate, există un grad de deformare. Polistirenul s-a lăsat deja, când s-a montat șapa. Austrotherm are chiar EPS de 20 cm cu aplicare sub șape. Că ar fi polistiren EPS-nuturi, EPS-tacker, extrudat XPS nu ar trebui să conteze pentru comportamentul finisajului: gresie, parchet. Nici aici nu mă iau după instalator. Văd ce spun făcătorii de XPS, EPS.

Puțină fizică, TRANSFERUL de căldură

Clar. Dacă nu știu despre transfer de căldura, conductivitate termică: tac 🔕❌💋, ciocu’ mic 🦜🙊.

Ardere 🔥 gaz, mangal, vreascuri rupte dintr-un gard, GPL, ulei etîchî ⇒ căldură.

Electric 🔌⚡. Energia electrică o transformăm în căldurăăă.

Pompe de căldură. Astea consumă tot curent 🔌⚡, dar pentru a condensa-evapora un agent 070 frigorific. Abia apoi, prin căldura latentă, agentul ăsta dă apei: și căldură (iarna), și răcoare (vara).

Cum ajunge căldura prin țevile alea la om?

Ardem 🔥 gazu’ ⇒ căldură ° prin convecție, radiație, conducție, căldură latentă (condensare)apă caldă (agent 007 termic) ° prin convecție, căldura trece de la apă → la țeavă, perete interior ° conducție prin peretele țevii ⇒ țeavă caldă pe exterior ° tot conducție de la țeavă → spre șapă jos → aceeași conducție face șapa caldă sus → conducție spre și în finisaj ⇒ suprafața văzută a finisajului caldă ° acești m² văzuți RADIAZĂ 🔅🔆🌞. Uraaa 🤸‍♀️🤸‍♂️! Radiația încălzește direct orice corp solid: pereți 🪑🚿🛀🚽🧻, inclusiv 💃🕺 omul. Bine, există și ceva conducție, că șapa atinge pereții și 👣🦶🐾.
Cele de mai sus = valabile și pentru electric, pompe de căldură.

⚠ Conductivitatea termică a țevilor
Conductivitate mare ⇒ putere mare degajată, kWh/h → temperaturi mai joase. Purmo 0,41 W/mK; Rehau și Uponor 0,35 W/mK.

Folie de aluminiu pentru parizer

Cred că e clar cum ajunge căldura la om. Cam cum poate mări această foiță transferul termic spre OM? Se enervează ceva electroni ai săi. O recomandă Chuck Norris pe wiki?

Dacă a uitat careva izolarea apei de sub casă, NU cred că soluția supremă este: făcătoarea de minuni, foița de aluminiu. Barieră de hapori? Vapori, pardon.

Conductivitatea șapei

λ = ~1,40 W/mK conductivitate șapă uscată (beton simplu 2000);
λ = ~1,40 W/mK conductivitate șapă fluidă.
Au aproximativ aceeași conductivitate. Contează doar grosimea pentru rezistența termică R, m²K/W. Vezi Calculator rezistență termică!
⚠ AU aceeași conductivitate.

Rezistența termică a șapei

R = ~0,032 W/m²K, grosime 4,5 cm peste țeavă
R = ~0,025 W/m²K, grosime 3,5 cm peste țeavă

Diferența temperaturilor șapă 4,5 versus 3,5 cm

1 cm de șapă în plus presupune +0,1..0,2°C în apă. Deci: neglijabil.
⚠ NU contează grosimea șapei. Contează pentru inerția termică. Alt subiect. Vezi automatizarea!

Rezistența termică a finisajului

R = 0,00..0,05 W/m²K, micro-ciment, plăci ceramice, PVC;
R = 0,05..0,10 W/m²K, parchet laminat, dublu, triplu stratificat, mochetă;
R = 0,10..0,15 W/m²K, parchet gros, masiv.
⚠ Finisajul este foarte important!

Un exemplu de puteri degajate pentru 30/25°C apă, 22° aer, pas 10 cm.
R 0,00 → 33 W/m²;
R 0,05 → 24 W/m²;
R 0,10 → 19 W/m²;
R 0,15 → 16 W/m² (sub jumate).
Facem invers, considerăm 33 W/m² puterea degajată.
R 0,00 → 30/25°C;
R 0,05 → 32/27°C;
R 0,10 → 34/29°C;
R 0,15 → 36/31°C (20% mai caldă apa).

⚠ Pompe de căldură!
Contează enorm pentru putere și COP. Știu, 6° par fix-pix, dar adaugă multe procente pe factură iarna. Față de exploatarea optimă (temp. mici), factura poate veni 2x; chiar peste 3x când frig-frig. Mai nasol, temperaturile mai mar scad puterea, kWh/h. Trebuie apelat la o rezistență electrică normală, cu consum electric de 1 la 1.

Fulgii, fibrele șapei

Compresiune sapa - pod beton armat
Compresiune șapă – pod beton armat – întindere
Compresiune sapa - pod bolta
Compresiune șapă – pod boltă – comprimare
Compresiune sapa - fulgi degeaba
Compresiune șapă – baraj beton – comprimare
Compresiune sapa - fibre degeaba
Compresiune șapă -baraj beton – comprimare

Șapa unei terase are -20°C iarna și 40°C vara. Probabil, n-o blochează nicio bordură, soclu. Aici, ar avea ceva rost fulgii, fibrele. Șapa din casă ar vrea să se dilate, dar dă-n pereți. Comprimare, deci. Betonul iubește compresiunea. Barajele cât China de ce sunt îndoite spre apa? Că betonul e apăsat, nu întins.

Fulgii care au λ sub 1,40 W/mK doar încurcă transferul termic, măresc rezistența termică. Rezistența mecanică e dată de fabricant, sau constructor.

Armarea șapei

Vezi mai sus ingineri constructori (încovoiere în sus ⇒ întindere, când șapa s-ar dilata, dar e blocată în capete de pereți). Dacă în șapă se pune plasă sudată (de obicei, non-obligatorie) Baumit recomandă peste țeavă chiar o grosime de min 5 cm, față de 4 cm fără armătură. Fierul crește conductivitatea = ok. Oricum, dacă trebuie vreo armătură, ne spune inginerul de c-ții, nu instalatorul.

Suprafața de CONTACT m²

😮😵🙄 Interesant.
În casă, balustrada de lemn are 22°C, cea de inox tot 22°C. Pe care o simțim mai rece? Simțim într-adevăr, nu e doar iluzie/percepție.

Cine răspunde corect în comentarii, va avea 🎁 100 € reducere din Încălzire în pardoseală preț.

Contact țeavă-șapă m²

Șapele uscate și fluide (ambele deshidratate) au aceeași densitate aparentă, ~aceeași porozitate ⇒ același contact m² (turnate atent). ⚠ Șapa să învelească țeava cât mai bine pe toată circumferința (și sub)! Să fie contact maxim între țeavă și șapă.

Cel mai usor, poros material
Cel mai ușor și poros material
0,160 kg/m³
2.000 kg/m³ ȘAPA

Scontact = 53 m², 1.000 m țeavă De 17 mm

Spre deosebire de coronavirus-context, ideal ar fi să avem 53,4 m² de contact între țeavă (1.000 m) și șapă. Fără goluri de aer, nici mari, nici mici-mici. Normal, dacă sunt doar jumate de m² în contact cu șapa, puterea degajată este jumate, sau trebuie să mărim temperatura cu multe-multe grade. Ca și când în loc de un calorifer de 1 metru, punem unul de juma de metru.

Contact țeavă-șapă EPS-nuturi m²

Cât contact fură nuturile? În nomogramele de dimensionare, făcătorii de sisteme de încălzire în pardoseală spun că nuturile fură vreo 1..3 W/m², ~2..4%. Io aș spune că în realitate mai mult, peste 10% (bine). ⚠ N-am cercetat. Zic.

Încalzire în pardoseala CONTACT nuturi 1
Încălzire în pardoseală CONTACT nuturi 1
Încalzire în pardoseala CONTACT nuturi 2
Încălzire în pardoseală CONTACT nuturi 2
Încalzire în pardoseala CONTACT nuturi 3
Încălzire în pardoseală CONTACT nuturi 3
Încalzire în pardoseala CONTACT nuturi 4
Încălzire în pardoseală CONTACT nuturi 4
Încalzire în pardoseala CONTACT fara nuturi
Încălzire în pardoseală CONTACT fără nuturi

Contactul & aditivul de șapă 👌

Cel greu, dens material
Cel mai greu, dens material – osmiu
22.950 kg/m³
2.000 kg/m³ ȘAPA

Aditivul de șapă face ca acele bule de aer să fie cât mai puține și cât mai mici. Omogenizare, uscare ok. Suprafață de contact MARE. Multe firme de șape aduc propriul aditiv.

Contact apă-țeavă

⚠ DEZAERISIRE instalație!
Același contact trebuie să-l aibă și apa cu țeava. NU jumate apă, jumate bule mari, mici-mici de aer!

Contact șapă-finisaj

Contact maxim ar trebui să existe și sub gresie, parchet. NU din 140 m² utili, să am contact doar 100 m²! Parchetul poate fi lipit. Sau, există folii (scumpeee, drept e) ce fac excelent contact. Rezistență termică spre zero.

Contact, contact, contact

⚠ Contact mare → cele mai joase temperaturi = cea mai mare eficiență a sursei de căldură, cea mai mică poluare, cea mai lungă durată de viață: echipamente, țevi, fitinguri, șapă, finisaj. Contact prost apă-țeavă, țeavă-șapă, șapă-finisaj ⇒ eficiența cea mai proastă a triadei sursă-instalație-casă + degradare prematură a celor abia înșirate!

Sănătate 🤞!
Contact zero cu 👑🦠🔬! Contacte maxime apă-țeavă, țeavă-șapă, șapă-finisaj!